
A Cloud-based Video Conferencing Application

Naveen Reddy Dyava (nd2794)˚, Abhilash Ganga (ag4797)˚, Mooizz Abdul (ma4496)˚

˚Department of Computer Science, Columbia University, New York

Abstract—This project introduces a video conferencing appli-
cation developed on AWS Cloud, utilizing OpenVidu—a tech-
nology stack facilitating seamless video call integration into
applications. The application, built on top of OpenVidu, accom-
modates up to four participants, featuring login and registration,
session recordings, screen sharing, chat functionality, and post-
call meeting analysis.

The post-call analysis includes user engagement tracking,
attendance monitoring, and the host’s capability to share meet-
ing data. Notably, the application provides meeting transcripts
in English and translations to Hindi, Chinese, Spanish, and
German, fostering inclusivity. Leveraging ChatGPT API, the
system conducts comprehensive analysis on transcripts, cover-
ing sentiment, topic modeling, speaker contributions, keyword
extraction, named entity recognition, dialogue flow, diversity
of opinions, key quotes identification, contextual analysis, and
language complexity.

This project showcases the synergy of AWS Cloud, OpenVidu,
and advanced analytics in creating an efficient video conferencing
platform. By integrating advanced analytics, it not only improves
the collaborative experience but also extracts valuable insights
from meetings, contributing to the evolution of virtual collabo-
ration technologies.

Index Terms—Video Conferencing, OpenVidu, AWS, Real-time
Collaboration, Cloud Computing Applications, User Engagement
Tracking, ChatGPT Analysis.

I. INTRODUCTION

In emulation of successful platforms such as Zoom, our
endeavor is to establish a cloud-based video conferencing
application designed to seamlessly facilitate communication
among multiple users. This project is driven by several key
objectives:

1) Feature-Rich Development: Our primary goal is to
craft a video conferencing application replete with ad-
vanced features to enhance the user experience.

2) Cloud Computing Integration: Leveraging cloud com-
puting resources is integral to our strategy, aiming to
achieve scalability and reliability in the application’s
performance.

3) Real-Time Communication: Ensuring seamless real-
time communication stands as a fundamental aspect, em-
phasizing the importance of fluid interaction for users.

The imperative for a video conferencing service lies in its
ability to facilitate effective remote communication over vast
distances, catering to a diverse user base. This service holds
significance for several reasons, as outlined below:

1) Collaboration: The incorporation of features such as
screen sharing and text chat box functionality promotes
collaboration among users.

2) Versatility: The application accommodates both one-
to-one conversations and large meetings, demonstrating
versatility for a myriad of applications.

3) Global Reach: Enabling people from across the globe
to connect, collaborate, and conduct business without
the constraints of extensive travel fosters a globalized
approach to communication.

4) Innovation: Anticipating future advancements, our plat-
form is poised for potential upgrades.

While established video conferencing platforms like Zoom
and Teams have successfully addressed various communi-
cation challenges, this project aspires to introduce unique
innovations. These innovations include meeting transcription,
language translation, and an in-depth analysis of meeting
effectiveness and participant engagement. By incorporating
these enhancements, our video conferencing application seeks
to distinguish itself in the landscape of collaborative platforms.

II. COMPREHENSIVE OVERVIEW OF APPLICATION
CAPABILITIES

When a user visits the website, it will show a sign-up
page. Using email and password, the users can sign up for
an account. An OTP based email verification is required for
completing the sign up process. Already registered users can
directly sign in using their credentials. Successfully signed in
users will be shown that landing page where there are two
main components - The upper ribbon and the historic meeting
details section (occupies majority of the screen). The upper
ribbon on the top contains three buttons - Home, Sign Out and
Meeting. The historic meeting details section will consists of
details about historic meetings the user hosted, referenced by
the Meeting Code (Session ID).

The Home button will redirect to the landing page at any
time. The sign out button will sign out an user out of the
application. The Meeting button will direct the user to page
where they will be able to either create a new meeting by
generating a new meeting code (creator of the meeting will
be by default the host) or join an existing meeting using an
existing meeting code which was generated by the hose (in
this case the user won’t be a host).

By pasting session code and clicking join button, the user
will be able to join the call. In the call, the user can mute or
unmute their audio and video streams. They also have a button
to leave the call. Only host will be able to start recording the
session and the users will be notified about it. There is also a
chat-box where the users will be able to type text messages.

Note that when a meeting is created and there is no one
in the session for more than 120s, the call will be terminated
automatically. This waiting period can be configured at the
back end. This helps in killing empty meeting and saving
computational resources like memory and network bandwidth.



Whenever the call is over, the host of the meeting will get a
very detailed email consisting link to the video recording, tran-
script of the meeting in English (if the meeting was recorded),
translation of the transcript to four languages (Hindi, Spanish,
German and Chinese), attendance details of the meeting partic-
ipants and a text document containing comprehensive analysis
on transcripts, covering sentiment, topic modeling, speaker
contributions, keyword extraction, named entity recognition,
dialogue flow, diversity of opinions, key quotes identification,
contextual analysis, and language complexity.

The host will be able to view the completed meeting on
their home page. The host of the meeting can optionally
share the meeting recording, transcripts, etc. to other meeting
participants just by the click of a button.

III. ARCHITECTURE & DATA FLOW

Fig. 1. Representation of the mechanism induced by traps on the average
drain current.

The following is the list of all the Microservices and APIs
that are used in the application:

1) cvc-api-gateway (AWS API Gateway)
2) application-server (AWS EC2 Instance)
3) openvidu-deployment-server (AWS EC2 Instance)
4) video-processor (AWS EC2 Instance)
5) session-analytics-queue (AWS Simple Queue Service)
6) video-processing-queue (AWS Simple Queue Service)
7) meeting-analytics-processor (AWS Lambda Function)
8) meeting-details-retriever (AWS Lambda Function)
9) meeting-emailer (AWS Lambda Function)

10) meeting-details (AWS DynamoDB)
11) meeting-analyses (AWS DynamoDB)
12) cvc-meeting-recordings (AWS S3)
13) cvc-hosting-bucket (AWS S3)
14) AWS Simple Email Service
15) AWS EventBridge Scheduler
16) AWS Transcribe
17) AWS Translate
18) ChatGPT API
19) AWS Cognito
Write about what happend during signup - Interaction with

cognito.

Whenever the user creates a new meeting, the front end will
make an API call which will touch the cvc-api-gateway and
gets routed to the EC2 instance. The application server will
make an API call to the openvidu-deployment-server to create
a session. This session will run in the openvidu-deployment-
server and the name of the session will be same as the session
code generated by the user in the front end. The openvidu-
deployment-server will get a response from the openvidu-
deployment-server and that response will be sent as a response
to the front end. On successful creation of the session, the
application server will record it in the meeting-details table,
thus identifying this user as the host of the created session.

Creating a session is just not enough. Immediately after
successful creation of the session, the front end will make
an API call to create a connection for that session. The data
flow in this case will be same as before, except this time a
connection object is returned this time. Using the Session ID
and Connection ID, the front end will make an API call to
the openvidu-deployment-server and create a WebSocket with
it. Now, any other user who wants to join a running session
will have to make an API call only to create a Connection
ID and then create a WebSocket with openvidu-deployment-
server. One instance of openvidu-deployment-server can run
multiple sessions. All these sessions can be managed using
the application-server by making REST API calls to openvidu-
deployment-server, which can be controlled from the front end
through REST API calls.

Activities performed by the users in the front end like, creat-
ing a session, joining a session, leave a session, clicking cam-
era and mice mute and unmute buttons, screen share, clicking
recording button, etc. will be notified to the application-server
through REST API calls. The application server will keep
recording these activities in the meeting-details DynamoDB
table.

The application-server runs in a AWS EC2 instance, which
is the heart of the whole application. It is a web server built
using Flask. The openvidu-deployment-server, which runs in
a different EC2 instance, is another web server that provides
all the necessary infrastructure for streaming real-time audio
and video. It can be treated as a black box whose state
can be controlled through REST API calls provided in its
documentation. The cvc-api-gateway is an AWS API Gateway
that directs REST API calls from the frond end applica-
tion to other services in the application, like application-
server, meeting-analytics-processor, meeting-details-retriever,
meeting-emailer.

Now that we have discussed about how meetings are created
and managed, lets us see what happens when a meeting ends.
Whenever a meeting is ended, in the next steps two different
kinds of tasks have to be performed on the collected data -
meeting click-streams and video recordings. The openvidu-
deployment-server stores the recorded meeting in the EC2
instance it is running on.

Whenever a meeting ends, the application server will pub-
lish messages into two queues - session-analytics-queue &
video-processing-queue. The message in each of these queues



will be the Session ID. The meeting-analytics-processor,
which is triggered by an Event Bridge Scheduler, will read
a message from the session-analytics-queue and will perform
the data analytics calculations on the click-stream data stored
in the meeting-details table. This analyzed data will be stored
in the meeting-analyses table. Similarly, the video-processor
will periodically poll messages from the video-processing-
queue. For each message, the video-processor will fetch the
video recording from the openvidu-deployment-server. Here it
will extract video from audio, transcribe the audio into text,
translate text transcripts into other languages and will make
an API call to ChatGPT to extract comprehensive analysis
on transcripts, covering sentiment, topic modeling, speaker
contributions, keyword extraction, named entity recognition,
dialogue flow, diversity of opinions, key quotes identification,
contextual analysis, and language complexity. All these newly
generated files from videos will be stored in cvc-meeting-
recordings S3 bucket.

There are 4 data stores in this application - two DynamoDB
tables and two S3 buckets. The meeting-details table stores the
click-stream data and also logs information about all the API
calls made by users. Data will be written into meeting-details
table by the application-server. The meeting-analyses table
stores the meeting analytics data processed by the meeting-
analytics-processor. The cvc-meeting-recordings bucket stores
the video recordings, extracted audio, meeting transcripts (in
English), translated meeting transcripts to other languages and
the ChatGPT analysis of the meeting transcripts, all of which
are processed by the video-processor.

After successful completion of processing by meeting-
analytics-processor, it will send an email consisting meeting
recording link, transcripts, attendance, all kinds of analyses we
generated to the meeting host. AWS Simple Email Service is
used to achieve this. Additionally, the meeting host can also
send the meeting details to all the participants by simple click
of a button in the front end. This button click will make an
API call, which will hit the cvc-api-gateway and will trigger
the meeting-emailer lambda function. This lambda function
will retrieve all the participants for the meeting ID, fetch their
email and will send them emails using AWS Simple Email
Service.

Also, whenever the user logs in, they will be able to see
details of all the meeting they hosted. To fetch details of all
the meetings, upon login, the front end will make an API call
that will trigger meeting-details-retriever upon touching the
API gateway.

IV. KEY DESIGN DETAILS

In the ARCHITECTURE & DATA FLOW section, role of
each micro-service and API are clearly explained. It is easy
to see the application-server and openvidu-deployment-server
are very important components for functioning of the video
call application and there is no other way of configuring them.
Other than orchestrating the video calls and managing audio-
streams, the application processes data of the meetings that
ended and sends emails to hosts and participants. One can

argue that many functionalities that are implemented using
the video-processor and other lambda functions can be im-
plemented on the application server itself. Although it sounds
fine theoretically, through multiple iterations of architecture
design, we decided that the existing configuration is the best.

Our emphasis is that the application will coordinate and
manage multiple meetings at a time. Processing video and per-
forming analytics on the meeting that ended require significant
amount of database queries and compute power which will
impact the performance and latency of the ongoing meetings.
So, it is better to separate the post-meeting analysis compute
from the application server.

Although its ideal to use a lambda function instead of EC2
for the video-processor, the choice of EC2 has been made for
various reasons. First and the most significant one being that
the python packages that are required to process the video,
exceed the allowable size limit on lambda functions. Also, if
we optimize package size by selectively building packages that
are only necessary for this computation and ignore the others,
lambda will not be an idea choice for meeting that are very
long. Say a meeting goes for 2 hours and the host records it
at highest resolution possible, the size the of file is going to
be soo huge that 15 minutes compute time on lambda may
not be enough. Even if we can do it under 15 minutes, the
memory might not be sufficient.

Also, from our experiments, we found that lambda function
meeting-analytics-processor is enough for analyzing the click-
stream data stored in meeting-details and sending emails
because it is computationally not as heavy as video processing
and if we run EC2 for this, we would be wasting compute.
The same reasoning goes for the choice of lambda function
for meeting-details-retriever and meeting-emailer.

Regarding, the use of queues - session-analytics-queue
and video-processing-queue, it was an ideal choice for many
reasons. Although we can make an API call to the video-
processor to tell it to process the video for each ended meeting,
practically its not a good design. We have considered that EC2
instances can fail when a video processing is going on and
when that happens we wouldn’t compute analysis on video
data. Using an SQS queue, we can poll messages from the
queue and process them when needed. We will delete the
message from the queue only when the video-processing is
completely done. If the process fails in between, the newly
launched EC2 instance will process it again till the end.

Similar logic goes for the use of the session-analytics-
queue. We have placed a trigger on the session-analytics-queue
to trigger meeting-analytics-processor lambda function. The
message will be deleted from the queue only when the lambda
is completely done executing. Also, It will launch as many
number of lambda instances as there are messages and will
perform automatic load-balancing.

Though we have used a single EC2 instance for video-
processor, in deployment we will be using an elastic load
balancer and launch multiple EC2 instances. Due to resource
constraints and significant cost of testing the load balancer and
multiple EC2 instances, we have used only one instance. The



same explanation goes for the use of a single EC2 instance
for application-server and openvidu-deployment-server.

Regarding data stores, we used DynamoDB tables -
meeting-details and meeting-analyses, to store click-stream
and meeting analyses because these are semi-structured data.
The video and transcripts are stored in S3 because they are
unstructured data.

V. IMPLEMENTATION DETAILS & CODE STRUCTURE

A. Application Server

Certainly, let’s delve into a more detailed explanation of the
two endpoints:

1) /api/sessions:-
This pivotal endpoint orchestrates the creation of ses-
sions within the application server. Upon invocation, it
evaluates whether a session with the provided ID already
exists. If not, a new session is initiated, designating
the initiator as the host or moderator. The moderator,
being the session orchestrator, is granted the authority
to record the ongoing session. The process involves a
meticulous verification of the session ID’s existence.
This verification mechanism determines whether to pro-
ceed with initializing a new session or to disregard the
call, as the session is already in progress.
Internally, this endpoint interfaces with the OpenVidu
server through a POST request. The request encapsulates
essential details such as authentication credentials and
the session ID earmarked for creation. Subsequently, a
new entry encapsulating the meeting ID, host details,
and the initiation time of the call is meticulously stored
in the meeting-details DynamoDB table. This record-
keeping mechanism ensures a comprehensive log of each
session, facilitating easy retrieval and management.

2) /api/sessions/ăsessionIdą/connections:-
This endpoint is dedicated to the establishment of con-
nections for participants within a specific session. It not
only creates a connection but also furnishes a WebSocket
to the frontend user, ensuring seamless communication.
An additional layer of functionality involves the veri-
fication of a participant’s role, particularly determining
whether the participant holds the esteemed position of a
moderator.
In cases where the participant is indeed a moderator,
their credentials are registered as the host of the meeting
in the meeting-details DynamoDB table. This meticulous
recording of the moderator’s details enriches the sys-
tem’s understanding of the ongoing meeting dynamics.
Similar to the previous endpoint, the process involves a
POST call to the OpenVidu server. This call is structured
to request a WebSocket connection, and concurrently, it
communicates the participant’s role, thereby bestowing
exclusive permissions as befitting their moderator status.
Collectively, these endpoints serve as the backbone of
the application server, orchestrating the creation of ses-
sions, managing connections, and seamlessly integrating

with the OpenVidu server to facilitate robust real-time
communication.

3) /api/sessions/ăsessionIdą/participants:- This API plays
a crucial role in managing participant entries into a
session. When participants join a session, this endpoint
captures pertinent information, such as their join time,
and stores it in the meeting-details DynamoDB. The
utilization of mutex locks during write operations en-
sures the integrity of the data. This precaution becomes
particularly significant in scenarios where a substantial
number of participants may concurrently enter a video
call, necessitating orderly updates to a single database
element.

4) /api/sessions/ăsessionIdą/participants/ăparticipantIdą

/events:- At the heart of participant interaction tracking
within a session, this API is triggered by various actions,
including toggling video/audio, screen sharing, stopping
screen sharing, and participant exits. The detailed log
of these interactions is stored in the meeting-details
DynamoDB. Moderators, endowed with additional
responsibilities, can initiate and terminate session
recordings. When a moderator initiates recording, the
API checks the moderator status of the participant
in DynamoDB. If the participant holds moderator
privileges, a POST call is made to the OpenVidu
server to commence recording, using the corresponding
sessionID. In the event of the moderator clicking the
stop recording button, the function identifies active
recordings associated with the sessionID through a
POST call to the OpenVidu server. Subsequently,
it orchestrates the cessation of the recording using
the recordID, employing another POST call to the
OpenVidu server.
Upon a participant’s departure from the session, a
POST call to the OpenVidu server gauges the num-
ber of remaining participants. If no participants are
left, the session concludes, and the details are metic-
ulously updated in DynamoDB. The ensuing step in-
volves dispatching the meetingID to two distinct SQS
queues—session-analytics-queue and video-processing-
queue. These queues are in turn consumed by two
distinct processes: the meeting-analysis Lambda func-
tion conducts an analysis on the details present
in the meeting-details DynamoDB, while the video-
processing-queue oversees the video processing on the
recorded meeting.
These APIs collectively form the backbone of the appli-
cation’s participant management and interaction track-
ing, ensuring seamless and comprehensive handling of
diverse user actions within a session.

5) Background Task:-
This function operates as a crucial component, func-
tioning as a daemon to ensure the integrity of sessions
within the application. Its primary role is to identify and
handle dangling sessions—those that have been created
but not joined by participants, or sessions prematurely



closed due to issues such as internet connectivity prob-
lems. Executing at regular intervals of 120 seconds, this
daemon proactively checks for the presence of active
sessions without participants by initiating a POST call
to the OpenVidu server.
Upon identifying such sessions, the daemon executes a
series of well-coordinated actions. Firstly, it stops any
ongoing recording associated with the session, ensuring
a clean transition. Subsequently, the daemon proceeds to
terminate the session. This involves making both POST
and DELETE calls to the OpenVidu server, effectively
closing the session and freeing up resources. As a final
step, the meetingID linked to the concluded session is
systematically pushed to SQS queues. This enqueued
data is then made available for further processing, en-
suring a streamlined and efficient handling of session
lifecycle events.

6) /health:-
The health endpoint serves as a fundamental tool for
monitoring the operational health of the application
server. When a request is made to this endpoint, a
rapid assessment is conducted to determine whether the
server is actively running or facing any issues. This
endpoint provides a straightforward and effective means
of real-time health monitoring, allowing administrators
and automated systems to quickly gauge the server’s
status. The simplicity and reliability of the ‘/health‘
endpoint make it an integral part of the server’s overall
health and performance management.

B. Video Processing Server

The video Processing server is an EC2 instance that will run
a python code. This Python code consists of a while loop that
goes on in infitie loop, with a sleep time of 15s for each loop.
In each iteration of this loop, it will pull one message from the
AWS SQS. We use AWS Boto3 Python SDK to create an SQS
client using the url of the queue. Using this SQS client we will
pull a message from the queue. If there exists no message in
the SQS it will pass to the end of the iteration. If there is a
message in the SQS, where each message corresponds to a
meeting ID, it will process the the video corresponding that
Session ID first. if we know the session ID we can get the
video data from the openvidu-deployment-server using REST
API calls.

After the video is downloaded to the EC2, it will be further
processed to obtain audio from it. To obtain audio from video
we use MoviePy library in python. Next we will create an s3
client using Boto3 in python. Using the S3 client we will create
a folder with session Id as name in the cvc-meeting-recordings
bucket. To this folder we will upload the video and audio files.
Next we will create an AWS Transcribe client using Boto3.
Using this transcribe client we will get a JSON output of
transcriptions, which will be processed further using heuristics
and we will generate transcriptions in English. This English
transcriptions will be stored to a local text file. Next we will
translate these english transcriptions into Japanese, Spanish,

Hindi and Chinese languages. All of these transcriptions will
be saved to local text files.

Now we will upload transcriptions in 5 languages to the
folder we created in the S3 bucket for the session ID. Next, we
will have to generate comprehensive analysis on transcripts,
covering sentiment, topic modeling, speaker contributions,
keyword extraction, named entity recognition, dialogue flow,
diversity of opinions, key quotes identification, contextual
analysis, and language complexity. For this we will have to use
ChatGPT API, which will be called using the OpenAI library
in python. Currently we are using a trial version of the API.
A highly tested prompt and the transcripts will be passed as
input to the ChatGPT API and we will get a report containing
comprehensive analysis on transcripts, covering sentiment,
topic modeling, speaker contributions, keyword extraction,
named entity recognition, dialogue flow, diversity of opinions,
key quotes identification, contextual analysis, and language
complexity. There will he heading for each analysis in the
ChatGPT output. This output will be saved to a local text will
and will be uploaded to the S3 bucket.

At last we will delet the message from the SQS to prevent
it from being processed again. Also, all the activities in this
EC2 instance are neatly logged.

C. Databases - DB1, DB2 & S3

We employ two DynamoDB databases to comprehensively
store information about all hosted meetings to date and the
complete user base that has engaged with our video call
application.

1) Meeting Details Database:-
The meeting-details DynamoDB employs the meetingID
as the primary key to meticulously store information
about meetings. For each meeting record, essential de-
tails such as the start time, end time, and the identity of
the meeting host are stored. Furthermore, the database
captures a comprehensive list of meeting participants,
with individual participant entries containing specifics
about their interactions during the meeting.
The interaction details are encapsulated as an array,
where each element within the array comprises the type
of interaction and the corresponding timestamp. This
meticulous recording of interactions provides a granular
and chronological account of the activities conducted
by each participant throughout the meeting duration.
In essence, the meeting-details DynamoDB acts as a
structured repository, ensuring a detailed and organized
record of all pertinent meeting information.

2) Meeting-analyses Database:-
The meeting-analyses DynamoDB is designed to store
user analytics, leveraging the userID as the primary key.
Within this database, the ‘meetings‘ attribute contains
comprehensive information about the meetings attended
by the user, including details about their activity during
each meeting. Additionally, the database maintains an
‘available meetings‘ attribute, indicating which meetings



are accessible to the user. This attribute serves as a valu-
able indicator of meetings that are open and accessible
to the respective user.

3) CVC Meeting Recordings S3 Bucket:- The S3 bucket
named cvc-meeting-recordings serves as a repository
for various meeting-related data. Within this bucket,
information is stored in a structured manner, featuring
transcripts in five languages, ChatGPT analyses, and
video recordings. Each meeting is organized into a di-
rectory, and the directory is named after the meetingID,
ensuring a systematic arrangement of data for easy
retrieval and management.

D. Lambda Functions

There are three Lambda functions designed for distinct
purposes: one for processing meeting details, another for in-
teracting with the frontend to provide information on attended
meetings, and the last for disseminating meeting details and
granting access to all users.

1) Meeting Analyzer:-
The Meeting-Analyzer Lambda function is triggered
when meeting details are placed in the ‘session-
analytics-queue‘ SQS queue. Upon activation, it re-
trieves the meetingID from the SQS queue and pro-
ceeds to process the corresponding meeting details. This
involves querying the ‘meeting-details‘ DynamoDB to
obtain information about the meeting. For each partici-
pant in the meeting, the function meticulously processes
their interactions, encompassing actions such as tog-
gling video/audio/screensharing, joining, and leaving the
meeting.
Utilizing these interaction logs, the function calculates
various metrics, including audio activity, video activity,
screen share activity, and the time spent by each partic-
ipant in the call. The computed details are then stored
in the ‘meeting-analysis‘ DynamoDB. For each user, a
new entry specific to the meetingID is appended to their
list of attended meetings.
Additionally, an email is dispatched to the host of
the meeting (information sourced from ‘meeting-details‘
DynamoDB). This email contains a comprehensive anal-
ysis of the meeting details for all participants present.
The analysis includes individual breakdowns of the
audio, video, and screen sharing activities, providing a
holistic view of each participant’s engagement during
the meeting.

2) Meeting Details Retriever:-
The Meeting-Details-Retriever Lambda function is in-
voked through the API Gateway, serving the purpose
of providing participants access to the details of meet-
ings they have attended. Upon triggering, the function
retrieves this information by querying the ‘meeting-
analysis‘ DynamoDB, where the user serves as the key.
For each user, the function compiles a list of attended
meetings, drawing from the corresponding column in the
DynamoDB.

There is an additional column in the meeting-analysis
DynamoDB that specifies the meetings visible to the
user (details of which are explained in the subse-
quent Lambda function). For each meeting, the func-
tion presents a comprehensive overview. This includes
the user’s interactions during the meeting, a transcript
available in five languages, ChatGPT’s analysis of the
meeting, and the associated video recording. Meetings
where the user holds the role of moderator feature
an exclusive button allowing the moderator to share
meeting details with participants.
Until the moderator utilizes this button, no other partic-
ipant gains access to meeting details in the frontend,
nor do they receive any information about the meet-
ing via email. Additionally, it’s worth noting that the
processing time required for meeting transcripts may
cause a delay in the visibility of transcript details in
the frontend. During this processing period, such details
remain unavailable to participants.

3) Meeting Email Sender:-
The Meeting-Email Lambda function is activated when
the host clicks the ”Share Details of the Meeting”
button, intending to distribute meeting information to all
participants. This involves retrieving the list of partici-
pants from the ‘meeting-details‘ DynamoDB, ensuring
that each participant’s list of available meetings in the
meeting-analysis DynamoDB is updated. This update
ensures that all participants can view the meeting details
in the frontend.
Subsequently, the Lambda function proceeds to send
emails to all participants and the host of the meeting.
Each email includes comprehensive details such as tran-
scripts in five languages, ChatGPT analysis, and the
video recording of the meeting. For each participant (ex-
cluding the host), the email additionally contains details
of their individual interactions during the meeting. In
contrast, the host receives a comprehensive overview,
encompassing interactions of all participants, along with
the complete transcript and video data of the meeting.
This Lambda function serves as a key facilitator in dis-
seminating meeting information, fostering transparency,
and ensuring that participants and hosts alike have access
to a detailed record of their collaborative sessions.

VI. RESULTS

See Figure 2, 3, 4 for results of outputs.

ANALYSIS OF THE CALL

SENTIMENT:

The sentiment in the call transcript appears to be primarily
neutral. There are no strong positive or negative emotions
expressed by the speakers. The conversation focuses on
discussing various topics without significant emotional bias.



TOPIC MODELING:

Based on a topic modeling analysis of the call transcript,
several key themes emerge:

1. Activism on college campuses: The speakers discuss
the shift of activism from corporate boardrooms to college
campuses. There is a concern about the current state of
college campuses and the challenges faced by Jewish and
Muslim students.

2. The role of universities in taking a stand on social
issues: The conversation explores the question of whether
universities should take a collective stand on social issues
or allow individual voices to prevail. The University of
Chicago’s approach of promoting free speech is highlighted
as a positive example.

3. Bill Ackman’s investment strategies: The discussion
briefly touches on Bill Ackman’s investment strategies,
particularly his recent focus on investing in treasury and
making macro bets on interest rates.

4. Potential changes in response to current pressures: The
speakers anticipate that there may be changes in response
to the current pressures faced by universities. They suggest
that university boards may become more sensitive to these
issues and there may be increased security for certain students.

SPEAKER CONTRIBUTION:

Speaker 1 has a significantly higher word count compared
to Speaker 0. Speaker 1 provides more detailed responses and
elaborates on various topics discussed in the call transcript.
Speaker 0 mainly asks questions and prompts Speaker 1 to
share their insights.

KEYWORD EXTRACTION:

Frequently mentioned keywords or phrases in the call
transcript include:

1. Activism
2. College campuses
3. Business people 4. Jewish and Muslim students 5. Social
issues 6. University of Chicago 7. Free speech 8. Bill Ackman
9. Investing 10. Treasury 11. Interest rates 12. University
boards

NAMED ENTITY RECOGNITION:

Named entities identified in the call transcript are:

1. Bill Ackman - Business person 2. Mark Owen -
Individual associated with Apollo 3. Claudine Gay -
Individual associated with Harvard 4. Mark Rowan -
Individual associated with Penn 5. Congress - Legislative

body 6. University of Chicago - Educational institution

DIALOGUE FLOW ANALYSIS:

The conversation follows a typical turn-taking pattern, with
Speaker 0 initiating most exchanges by asking questions, and
Speaker 1 providing detailed responses. There are no notable
shifts in topic or interruptions.

DIVERSITY OF OPINIONS:

Both speakers express agreement on certain points, such as
the need for universities to address the concerns on college
campuses and the importance of free speech. However, they
also recognize the complexity of the issues discussed and
do not provide definitive answers or solutions, indicating a
diversity of opinions.

KEY QUOTES IDENTIFICATION:

1. ”There’s no doubt that there’s a lot of concern in
the business but other communities about what’s going on
on college campuses.” 2. ”Should corporations be taking
positions on these kind of issues?” 3. ”But there’s been a
lot of free speech at the University of Chicago. And I think
that’s a great tradition there.” 4. ”Some campuses are far
left, some are maybe more conservative and people who
disagree with the conventional or the majority view don’t get
the kind of support that they might want to receive from the
college presences or universities in some cases.” 5. ”I think
the university boards are probably going to be more sensitive
to these issues.”

CONTEXTUAL ANALYSIS:

The conversation provides insights into the broader context
surrounding activism on college campuses, the role of
universities in addressing social issues, and the investment
strategies of Bill Ackman. The speakers draw from their
personal experiences and observations to discuss these topics.

LANGUAGE COMPLEXITY:

The language used in the call transcript is relatively
formal and professional. There are no instances of technical
or highly complex language. The speakers convey their ideas
clearly and effectively without excessive use of jargon.

Overall, the call transcript analysis highlights the sentiment,
key themes, speaker contributions, frequently mentioned key-
words, named entities, dialogue flow, diversity of opinions, key
quotes, contextual analysis, and language complexity present
in the conversation.

VII. OPPORTUNITIES FOR IMPROVEMENT

Enhancing the user interface for video calls will be a
priority. Additionally, we aim to leverage Amazon EKS for



Fig. 2. S3 Image of outpute

Fig. 3. Multiple Language Translated

Fig. 4. Meetings History

scaling both the Flask Application (Application Server) and
the OpenVidu Server (WebRTC communication facilitator).
As part of our improvement efforts, we are introducing a
Language Model-based (LLM) interface for the generated
transcripts. This interface enables us to pose questions based
on the meeting transcript, further enriching the interactive and
analytical capabilities of our application.

VIII. CONCLUSION

In conclusion, this project introduces a robust video confer-
encing application developed on the AWS Cloud, seamlessly
integrating OpenVidu technology to enhance real-time collab-
oration experiences. The application, accommodating up to
four participants, encompasses essential features such as login
and registration, session recordings, screen sharing, and chat
functionality. Post-call meeting analysis, a distinctive aspect of

this application, includes user engagement tracking, attendance
monitoring, and the host’s ability to share meeting data.

Noteworthy is the application’s commitment to inclusivity
by providing meeting transcripts in English and translations
into Hindi, Chinese, Spanish, and German. Leveraging the
ChatGPT API, the system performs a comprehensive analy-
sis on meeting transcripts, covering sentiment, topic model-
ing, speaker contributions, keyword extraction, named entity
recognition, dialogue flow, diversity of opinions, key quotes
identification, contextual analysis, and language complexity.

This project underscores the synergy achieved through the
integration of AWS Cloud, OpenVidu, and advanced analytics,
resulting in an efficient and feature-rich video conferencing
platform. Beyond enhancing the collaborative experience, the
application extracts valuable insights from meetings, con-
tributing to the ongoing evolution of virtual collaboration
technologies.

Index Terms—Video Conferencing, OpenVidu, AWS, Real-
time Collaboration, Cloud Computing Applications, User En-
gagement Tracking, ChatGPT Analysis.

REFERENCES

Open Vidu Docs - https://docs.openvidu.io/en/stable/


